

    
      
          
            
  
Firebase Admin SDK for PHP

Interact with Google Firebase [https://firebase.google.com] from your PHP application.

[image: License]
 [https://github.com/kreait/firebase-php/blob/master/LICENSE][image: Stargazers]
 [https://github.com/kreait/firebase-php/stargazers][image: Total downloads]
 [https://packagist.org/packages/kreait/firebase-php][image: Community chat]
 [https://discord.gg/nbgVfty][image: Sponsoring]
 [https://github.com/sponsors/jeromegamez]
Note

If you are interested in using the PHP Admin SDK as a client for end-user access
(for example, in a web application), as opposed to admin access from a
privileged environment (like a server), you should instead follow the
instructions for setting up the client JavaScript SDK [https://firebase.google.com/docs/web/setup].



The source code can be found at https://github.com/kreait/firebase-php/ .


User Guide



	Overview
	Requirements

	Installation

	Usage examples

	Issues/Support

	License

	Contributing
	Guidelines

	Running the tests

	Coding standards









	Setup
	Google Service Account
	With autodiscovery





	Custom Database URI

	Caching

	End User Credentials





	Cloud Messaging
	Initializing the Messaging component

	Getting started

	Send messages to topics

	Send conditional messages

	Send messages to specific devices

	Send messages to multiple devices (Multicast)

	Send multiple messages at once

	Adding a notification

	Adding data

	Changing the message target

	Adding target platform specific configuration
	Android

	APNs

	WebPush





	Adding platform independent FCM options

	Using Emojis

	Sending a fully configured raw message

	Validating messages

	Topic management
	Subscribe to a topic

	Unsubscribe from a topic





	App instance management
	Working with topic subscriptions









	Cloud Firestore
	Initializing the Firestore component

	Getting started





	Cloud Storage
	Initializing the Storage component

	Getting started

	Default Storage bucket





	Realtime Database
	Initializing the Realtime Database component

	Retrieving data
	Database Snapshots

	Queries

	Shallow queries

	Ordering data

	Filtering data





	Saving data
	Set/replace values

	Update specific fields

	Writing lists

	Server values

	Delete data





	Database transactions
	Replace data inside a transaction

	Delete data inside a transaction

	Handling transaction failures





	Debugging API exceptions

	Database rules





	Authentication
	Initializing the Auth component

	Create custom tokens

	Verify a Firebase ID Token

	Custom Authentication Flows
	Anonymous Sign In

	Sign In with Email and Password

	Sign In with Email and Oob Code

	Sign In with a Custom Token

	Sign In with a Refresh Token

	Sign In without a token





	Invalidate user sessions





	User management
	User Records

	List users

	Get information about a specific user

	Create a user

	Update a user

	Change a user’s password

	Change a user’s email

	Disable a user

	Enable a user

	Update custom attributes

	Delete a user

	Using Email Action Codes
	Action Code Settings

	Email verification

	Password reset

	Email link for sign-in

	Confirm a password reset









	Dynamic Links
	Getting started

	Initializing the Dynamic Links component

	Create a Dynamic Link

	Create a short link from a long link

	Get link statistics
	Event Statistics





	Advanced usage
	Using actions

	Using parameter arrays









	Remote Config
	Before you begin

	Initializing the Realtime Database component

	Get the Remote Config

	Create a new Remote Config

	Add a condition

	Add a parameter

	Conditional values

	Validation

	Publish the Remote Config

	Remote Config history
	List versions

	Filtering

	Get a specific version

	Rollback to a version









	Framework Integrations
	Laravel

	Symfony

	CodeIgniter





	Tutorials
	Articles

	Videos





	Troubleshooting
	PHP Parse Error/PHP Syntax Error

	Class ‘Kreait\Firebase\ …’ not found

	Call to undefined function openssl_sign()

	cURL error XX: …

	ID Tokens are issued in the future

	“403 Forbidden” Errors

	Proxy configuration

	Debugging API requests















          

      

      

    

  

    
      
          
            
  
Overview


Requirements


	PHP >= 7.0


	The mbstring PHP extension [http://php.net/manual/en/book.mbstring.php]


	A Firebase project - create a new project in the Firebase console [https://firebase.google.com/console/],
if you don’t already have one.


	A Google service account, follow the instructions in the
official Firebase Server documentation [https://firebase.google.com/docs/server/setup#add_firebase_to_your_app]
and place the JSON configuration file somewhere in your project’s path.







Installation

The recommended way to install the Firebase Admin SDK is with
Composer [http://getcomposer.org]. Composer is a dependency management tool
for PHP that allows you to declare the dependencies your project needs and
installs them into your project.

If you want to use the SDK within a Framework, please follow the installation instructions here:


	Laravel: kreait/laravel-firebase [https://github.com/kreait/laravel-firebase]


	Symfony: kreait/firebase-bundle [https://github.com/kreait/firebase-bundle]




composer require kreait/firebase-php:^4.43





Alternatively, you can specify the Firebase Admin SDK as a dependency in your
project’s existing composer.json file:

 {
   "require": {
     "kreait/firebase-php": "^4.43"
   }
}





After installing, you need to require Composer’s autoloader:

<?php

require __DIR__.'/vendor/autoload.php';





You can find out more on how to install Composer, configure autoloading, and
other best-practices for defining dependencies at
getcomposer.org [http://getcomposer.org].

Please continue to the Setup section to learn more about connecting your application to Firebase.




Usage examples

You can find usage examples at
https://github.com/jeromegamez/firebase-php-examples
and in the tests directory [https://github.com/kreait/firebase-php/tree/master/tests]
of this project’s GitHub repository [https://github.com/kreait/firebase-php/].




Issues/Support


	For bugs, feature requests and past issues: Github issue tracker [https://github.com/kreait/firebase-php/issues/]


	For help with and discussion about the PHP SDK: Discord channel dedicated to this library [https://discord.gg/nbgVfty]


	For questions about Firebase in general: Stack Overflow [https://stackoverflow.com/questions/tagged/firebase] and the Firebase Slack Community [https://firebase.community].







License

Licensed using the MIT license [http://opensource.org/licenses/MIT].


Copyright (c) Jérôme Gamez <https://github.com/jeromegamez> <jerome@gamez.name>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.







Contributing


Guidelines


	The SDK utilizes PSR-1, PSR-2, PSR-4, and PSR-7.


	This SDK has a minimum PHP version requirement of PHP 7.0. Pull requests must
not require a PHP version greater than PHP 7.0 unless the feature is only
utilized conditionally.


	All pull requests must include unit tests to ensure the change works as
expected and to prevent regressions.







Running the tests

The SDK is unit tested with PHPUnit. Run the tests using the Makefile:

make tests








Coding standards

The SDK uses the PHP Coding Standars Fixer [https://github.com/FriendsOfPHP/PHP-CS-Fixer]
to ensure a uniform coding style. Apply coding standard fixed using the Makefile:

make cs





from the root of the project.









          

      

      

    

  

    
      
          
            
  
Setup


Google Service Account

In order to access a Firebase project using a server SDK, you must authenticate your requests to Firebase with
a Service Account [https://developers.google.com/identity/protocols/OAuth2ServiceAccount].

Follow the steps described in the official Firebase documentation to create a Service Account for your Firebase
application:
Add the Firebase Admin SDK to your Server [https://firebase.google.com/docs/admin/setup#add_firebase_to_your_app].

You can then configure the SDK to use this Service Account:

With the SDK

use Kreait\Firebase\Factory;

$factory = (new Factory)->withServiceAccount('/path/to/firebase_credentials.json');





With the Symfony Bundle [https://github.com/kreait/firebase-bundle]

Please see https://github.com/kreait/firebase-bundle#configuration

With the Laravel/Lumen Package [https://github.com/kreait/laravel-firebase]

Please see https://github.com/kreait/laravel-firebase#configuration


With autodiscovery

The SDK is able to autodiscover the Service Account for your project in the following conditions:


	Your application runs on Google Cloud Engine.


	The path to the JSON key file is defined in one of the following environment variables


	FIREBASE_CREDENTIALS


	GOOGLE_APPLICATION_CREDENTIALS






	The JSON Key file is located in Google’s “well known path”


	on Linux/MacOS: $HOME/.config/gcloud/application_default_credentials.json


	on Windows: $APPDATA/gcloud/application_default_credentials.json








If you want to use autodiscovery, a Service Account must not be explicitly configured.






Custom Database URI


Note

It is not necessary to define a custom database URI in most cases.



If the project ID in the JSON file does not match the URL of your Firebase application, or if you want to
be explicit, you can configure the Factory like this:

use Kreait\Firebase\Factory;

$factory = (new Factory())
    ->withDatabaseUri('https://my-project.firebaseio.com');








Caching

Before connecting to the Firebase APIs, the SDK fetches an authentication token for your credentials.
This authentication token is cached in-memory so that it can be re-used during the same process.

If you want to cache authentication tokens more effectively, you can provide any
implementation of psr/cache [https://packagist.org/providers/psr/cache-implementation] to the
Firebase factory when creating your Firebase instance.


Note

Authentication tokens are cached in-memory by default. For Symfony and Laravel,
the Framework’s cache will automatically be used.



For Symfony and Laravel, the Framework’s cache will automatically be used.

Here is an example using the Symfony Cache Component [https://symfony.com/doc/current/components/cache.html]:

use Symfony\Component\Cache\Simple\FilesystemCache;

$factory = $factory->withAuthTokenCache(new FilesystemCache());





In order to verify ID tokens, the verifier makes a call to fetch Firebase’s currently available public keys.
The keys are cached in memory by default.

If you want to cache the public keys more effectively, you can provide any
implementation of psr/simple-cache [https://packagist.org/providers/psr/simple-cache-implementation] to the
Firebase factory when creating your Firebase instance.


Note

Public keys tokens are cached in-memory by default. For Symfony and Laravel,
the Framework’s cache will automatically be used.



Here is an example using the Symfony Cache Component [https://symfony.com/doc/current/components/cache.html]:

use Symfony\Component\Cache\Simple\FilesystemCache;

$factory = $factory->withVerifierCache(new FilesystemCache());








End User Credentials


Note

While theoretically possible, it’s not recommended to use end user credentials in the context
of a Server-to-Server backend application.



When using End User Credentials (for example if you set you application default credentials locally
with gcloud auth application-default login), you need to provide the ID of the project you
want to access directly and suppress warnings triggered by the Google Auth Component:

use Kreait\Firebase\Factory;

putenv('SUPPRESS_GCLOUD_CREDS_WARNING=true');

// This will use the project defined in the Service Account
// credentials files by default
$base = (new Factory())->withProjectId('firebase-project-id');











          

      

      

    

  

    
      
          
            
  
Cloud Messaging

[image: Available since v4.5]
 [https://github.com/kreait/firebase-php/releases/tag/4.5.0]You can use the Firebase Admin SDK for PHP to send Firebase Cloud Messaging messages to end-user devices. Specifically, you can send messages to individual devices, named topics, or condition statements that match one or more topics.


Note

Sending messages to Device Groups is only possible with legacy protocols which are not supported
by this SDK.



Before you start, please read about Firebase Remote Config in the official documentation:


	Introduction to Firebase Cloud Messaging [https://firebase.google.com/docs/cloud-messaging/]


	Introduction to Admin FCM API [https://firebase.google.com/docs/cloud-messaging/admin/]





Initializing the Messaging component

With the SDK

$messaging = $factory->createMessaging();





With Dependency Injection (Symfony Bundle [https://github.com/kreait/firebase-bundle]/Laravel/Lumen Package [https://github.com/kreait/laravel-firebase])

use Kreait\Firebase\Messaging;

class MyService
{
    public function __construct(Messaging $messaging)
    {
        $this->messaging = $messaging;
    }
}





With the Laravel app() helper (Laravel/Lumen Package [https://github.com/kreait/laravel-firebase])

$messaging = app('firebase.messaging');








Getting started

use Kreait\Firebase\Messaging\CloudMessage;

$message = CloudMessage::withTarget(/* see sections below */)
    ->withNotification(Notification::create('Title', 'Body'))
    ->withData(['key' => 'value']);

$messaging->send($message);





A message must be an object implementing Kreait\Firebase\Messaging\Message or an array that can
be parsed to a Kreait\Firebase\Messaging\CloudMessage.

You can use Kreait\Firebase\Messaging\RawMessageFromArray to create a message without the SDK checking it
for validity before sending it. This gives you full control over the sent message, but also means that you
have to send/validate a message in order to know if it’s valid or not.


Note

If you notice that a field is not supported by the SDK yet, please open an issue on the issue tracker, so that others
can benefit from it as well.






Send messages to topics

Based on the publish/subscribe model, FCM topic messaging allows you to send a message to multiple devices that have opted in to a particular topic. You compose topic messages as needed, and FCM handles routing and delivering the message reliably to the right devices.

For example, users of a local weather forecasting app could opt in to a “severe weather alerts” topic and receive notifications of storms threatening specified areas. Users of a sports app could subscribe to automatic updates in live game scores for their favorite teams.

Some things to keep in mind about topics:


	Topic messaging supports unlimited topics and subscriptions for each app.


	Topic messaging is best suited for content such as news, weather, or other publicly available information.


	Topic messages are optimized for throughput rather than latency. For fast, secure delivery to single devices or small groups of devices, target messages to registration tokens, not topics.




You can create a message to a topic in one of the following ways:

use Kreait\Firebase\Messaging\CloudMessage;

$topic = 'a-topic';

$message = CloudMessage::withTarget('topic', $topic)
    ->withNotification($notification) // optional
    ->withData($data) // optional
;

$message = CloudMessage::fromArray([
    'topic' => $topic,
    'notification' => [/* Notification data as array */], // optional
    'data' => [/* data array */], // optional
]);

$messaging->send($message);








Send conditional messages


Warning

OR-conditions are currently not processed correctly by the Firebase Rest API, leading to undelivered messages.
This can be resolved by splitting up a message to an OR-condition into multiple messages to AND-conditions.
So one conditional message to 'a' in topics || 'b' in topics should be sent as two messages
to the conditions 'a' in topics && !('b' in topics) and 'b' in topics && !('a' in topics)


	References:

	
	https://github.com/firebase/quickstart-js/issues/183


	https://stackoverflow.com/a/52302136/284325










Sometimes you want to send a message to a combination of topics. This is done by specifying a condition, which is a boolean expression that specifies the target topics. For example, the following condition will send messages to devices that are subscribed to TopicA and either TopicB or TopicC:

"'TopicA' in topics && ('TopicB' in topics || 'TopicC' in topics)"

FCM first evaluates any conditions in parentheses, and then evaluates the expression from left to right. In the above expression, a user subscribed to any single topic does not receive the message. Likewise, a user who does not subscribe to TopicA does not receive the message. These combinations do receive it:


	TopicA and TopicB


	TopicA and TopicC




use Kreait\Firebase\Messaging\CloudMessage;

$condition = "'TopicA' in topics && ('TopicB' in topics || 'TopicC' in topics)";

$message = CloudMessage::withTarget('condition', $condition)
    ->withNotification($notification) // optional
    ->withData($data) // optional
;

$message = CloudMessage::fromArray([
    'condition' => $condition,
    'notification' => [/* Notification data as array */], // optional
    'data' => [/* data array */], // optional
]);

$messaging->send($message);








Send messages to specific devices

The Admin FCM API allows you to send messages to individual devices by specifying a registration token for the target device. Registration tokens are strings generated by the client FCM SDKs for each end-user client app instance.

Each of the Firebase client SDKs are able to generate these registration tokens: iOS [https://firebase.google.com/docs/cloud-messaging/ios/client#access_the_registration_token], Android [https://firebase.google.com/docs/cloud-messaging/android/client#sample-register], Web [https://firebase.google.com/docs/cloud-messaging/js/client#access_the_registration_token], C++ [https://firebase.google.com/docs/cloud-messaging/cpp/client#access_the_device_registration_token], and Unity [https://firebase.google.com/docs/cloud-messaging/unity/client#initialize_firebase_messaging].

use Kreait\Firebase\Messaging\CloudMessage;

$deviceToken = '...';

$message = CloudMessage::withTarget('token', $deviceToken)
    ->withNotification($notification) // optional
    ->withData($data) // optional
;

$message = CloudMessage::fromArray([
    'token' => $deviceToken,
    'notification' => [/* Notification data as array */], // optional
    'data' => [/* data array */], // optional
]);

$messaging->send($message);








Send messages to multiple devices (Multicast)

[image: Available since v4.24]
 [https://github.com/kreait/firebase-php/releases/tag/4.24.0]You can send send one message to up to 500 devices:

use Kreait\Firebase\Messaging\CloudMessage;

$deviceTokens = ['...', '...' /* ... */];

$message = CloudMessage::new(); // Any instance of Kreait\Messaging\Message

$sendReport = $messaging->sendMulticast($message, $deviceTokens);





The returned value is an instance of Kreait\Firebase\Messaging\MulticastSendReport and provides you with
methods to determine the successes and failures of the multicasted message:

$report = $messaging->sendMulticast($message, $deviceTokens);

echo 'Successful sends: '.$report->successes()->count().PHP_EOL;
echo 'Failed sends: '.$report->failures()->count().PHP_EOL;

if ($report->hasFailures()) {
    foreach ($report->failures()->getItems() as $failure) {
        echo $failure->error()->getMessage().PHP_EOL;
    }
}








Send multiple messages at once

[image: Available since v4.29]
 [https://github.com/kreait/firebase-php/releases/tag/4.29.0]You can send send up to 500 prepared messages (each message has a token, topic or condition as a target) in one go:

use ;

$messages = [
    // Up to 500 items, either objects implementing Kreait\Firebase\Messaging\Message
    // or arrays that can be used to create valid to Kreait\Firebase\Messaging\Cloudmessage instances
];

$message = CloudMessage::new(); // Any instance of Kreait\Messaging\Message

/** @var Kreait\Firebase\Messaging\MulticastSendReport $sendReport **/
$sendReport = $messaging->sendAll($messages);








Adding a notification

A notification is an instance of Kreait\Firebase\Messaging\Notification and can be
created in one of the following ways. The title and the body of a notification
are both optional.

use Kreait\Firebase\Messaging\Notification;

$title = 'My Notification Title';
$body = 'My Notification Body';
$imageUrl = 'http://lorempixel.com/400/200/';

$notification = Notification::fromArray([
    'title' => $title,
    'body' => $body,
    'image' => $imageUrl,
]);

$notification = Notification::create($title, $body);

$changedNotification = $notification
    ->withTitle('Changed title')
    ->withBody('Changed body)
    ->withImageUrl('http://lorempixel.com/200/400/');





Once you have created a message with one of the methods described below,
you can attach the notification to it:

$message = $message->withNotification($notification);








Adding data

The data attached to a message must be an array of key-value pairs
where all keys and values are strings.

Once you have created a message with one of the methods described below,
you can attach data to it:

$data = [
    'first_key' => 'First Value',
    'second_key' => 'Second Value',
];

$message = $message->withData($data);








Changing the message target

You can change the target of an already created message with the withChangedTarget() method.

use Kreait\Firebase\Messaging\CloudMessage;

$deviceToken = '...';
$anotherDeviceToken = '...';

$message = CloudMessage::withTarget('token', $deviceToken)
    ->withNotification(['title' => 'My title', 'body' => 'My Body'])
;

$messaging->send($message);

$sameMessageToDifferentTarget = $message->withChangedTarget('token', $anotherDeviceToken);








Adding target platform specific configuration

You can target platforms specific configuration to your messages.


Android

You can find the full Android configuration reference in the official documentation:
REST Resource: projects.messages.AndroidConfig [https://firebase.google.com/docs/reference/fcm/rest/v1/projects.messages#androidconfig]

use Kreait\Firebase\Messaging\AndroidConfig;

// Example from https://firebase.google.com/docs/cloud-messaging/admin/send-messages#android_specific_fields
$config = AndroidConfig::fromArray([
    'ttl' => '3600s',
    'priority' => 'normal',
    'notification' => [
        'title' => '$GOOG up 1.43% on the day',
        'body' => '$GOOG gained 11.80 points to close at 835.67, up 1.43% on the day.',
        'icon' => 'stock_ticker_update',
        'color' => '#f45342',
    ],
]);

$message = $message->withAndroidConfig($config);








APNs

You can find the full APNs configuration reference in the official documentation:
REST Resource: projects.messages.ApnsConfig [https://firebase.google.com/docs/reference/fcm/rest/v1/projects.messages#apnsconfig]

use Kreait\Firebase\Messaging\ApnsConfig;

// Example from https://firebase.google.com/docs/cloud-messaging/admin/send-messages#apns_specific_fields
$config = ApnsConfig::fromArray([
    'headers' => [
        'apns-priority' => '10',
    ],
    'payload' => [
        'aps' => [
            'alert' => [
                'title' => '$GOOG up 1.43% on the day',
                'body' => '$GOOG gained 11.80 points to close at 835.67, up 1.43% on the day.',
            ],
            'badge' => 42,
        ],
    ],
]);

$message = $message->withApnsConfig($config);








WebPush

You can find the full WebPush configuration reference in the official documentation:
REST Resource: projects.messages.Webpush [https://firebase.google.com/docs/reference/fcm/rest/v1/projects.messages#webpushconfig]

use Kreait\Firebase\Messaging\WebPushConfig;

// Example from https://firebase.google.com/docs/cloud-messaging/admin/send-messages#webpush_specific_fields
$config = WebPushConfig::fromArray([
    'notification' => [
        'title' => '$GOOG up 1.43% on the day',
        'body' => '$GOOG gained 11.80 points to close at 835.67, up 1.43% on the day.',
        'icon' => 'https://my-server/icon.png',
    ],
    'fcm_options' => [
        'link' => 'https://my-server/some-page',
    ],
]);

$message = $message->withWebPushConfig($config);










Adding platform independent FCM options

[image: Available since v4.27]
 [https://github.com/kreait/firebase-php/releases/tag/4.27.0]You can find the full FCM Options configuration reference in the official documentation:
REST Resource: projects.messages.fcm_options [https://firebase.google.com/docs/reference/fcm/rest/v1/projects.messages#fcmoptions]

use Kreait\Firebase\Messaging\FcmOptions;

$fcmOptions = FcmOptions::create()
    ->withAnalyticsLabel('my-analytics-label');
// or
$fcmOptions = [
    'analytics_label' => 'my-analytics-label';
];

$message = $message->withFcmOptions($fcmOptions);








Using Emojis

Firebase Messaging supports Emojis in Messages.


Note

You can find a full list of all currently available Emojis at
https://www.unicode.org/emoji/charts/full-emoji-list.html



// You can copy and paste an emoji directly into you source code
$text = "This is an emoji 😀";

// This only works in PHP ^7.0, double quotes are required
$text = "This is an emoji \u{1F600}";








Sending a fully configured raw message

[image: Available since v4.27]
 [https://github.com/kreait/firebase-php/releases/tag/4.27.0]
Note

The message will be parsed and validated by the SDK.



use Kreait\Firebase\Messaging\RawMessageFromArray;

$message = new RawMessageFromArray([
        'notification' => [
            // https://firebase.google.com/docs/reference/fcm/rest/v1/projects.messages#notification
            'title' => 'Notification title',
            'body' => 'Notification body',
            'image' => 'http://lorempixel.com/400/200/',
        ],
        'data' => [
            'key_1' => 'Value 1',
            'key_2' => 'Value 2',
        ],
        'android' => [
            // https://firebase.google.com/docs/reference/fcm/rest/v1/projects.messages#androidconfig
            'ttl' => '3600s',
            'priority' => 'normal',
            'notification' => [
                'title' => '$GOOG up 1.43% on the day',
                'body' => '$GOOG gained 11.80 points to close at 835.67, up 1.43% on the day.',
                'icon' => 'stock_ticker_update',
                'color' => '#f45342',
            ],
        ],
        'apns' => [
            // https://firebase.google.com/docs/reference/fcm/rest/v1/projects.messages#apnsconfig
            'headers' => [
                'apns-priority' => '10',
            ],
            'payload' => [
                'aps' => [
                    'alert' => [
                        'title' => '$GOOG up 1.43% on the day',
                        'body' => '$GOOG gained 11.80 points to close at 835.67, up 1.43% on the day.',
                    ],
                    'badge' => 42,
                ],
            ],
        ],
        'webpush' => [
            // https://firebase.google.com/docs/reference/fcm/rest/v1/projects.messages#webpushconfig
            'notification' => [
                'title' => '$GOOG up 1.43% on the day',
                'body' => '$GOOG gained 11.80 points to close at 835.67, up 1.43% on the day.',
                'icon' => 'https://my-server/icon.png',
            ],
        ],
        'fcm_options' => [
            // https://firebase.google.com/docs/reference/fcm/rest/v1/projects.messages#fcmoptions
            'analytics_label' => 'some-analytics-label'
        ]
    ]);

$messaging->send($message);








Validating messages

[image: Available since v4.12]
 [https://github.com/kreait/firebase-php/releases/tag/4.12.0]You can validate a message by sending a validation-only request to the Firebase REST API. If the message is invalid,
a KreaitFirebaseExceptionMessagingInvalidMessage exception is thrown, which you can catch to evaluate the raw
error message(s) that the API returned.

use Kreait\Firebase\Exception\Messaging\InvalidMessage;

try {
    $messaging->validate($message);
} catch (InvalidMessage $e) {
    print_r($e->errors());
}








Topic management

[image: Available since v4.8]
 [https://github.com/kreait/firebase-php/releases/tag/4.8.0]
Subscribe to a topic

You can subscribe one or multiple devices to a topic by passing registration tokens to the
subscribeToTopic() method.

$topic = 'my-topic';
$registrationTokens = [
    // ...
};

$messaging->subscribeToTopic($topic, $registrationTokens);






Note

You can subscribe up to 1,000 devices in a single request. If you provide an array with over 1,000
registration tokens, the operation will fail with an error.






Unsubscribe from a topic

You can unsubscribe one or multiple devices from a topic by passing registration tokens to the
unsubscribeFromTopic() method.

$topic = 'my-topic';
$registrationTokens = [
    // ...
};

$messaging->unsubscribeFromTopic($topic, $registrationTokens);






Note

You can unsubscribe up to 1,000 devices in a single request. If you provide an array with over 1,000
registration tokens, the operation will fail with an error.








App instance management

[image: Available since v4.28]
 [https://github.com/kreait/firebase-php/releases/tag/4.28.0]A registration token is related to an application that generated it. You can retrieve current information
about an app instance by passing a registration token to the getAppInstance() method.

$registrationToken = '...';

$appInstance = $messaging->getAppInstance($registrationToken);
// Return the full information as provided by the Firebase API
$instanceInfo = $appInstance->rawData();

/* Example output for an Android application instance:
    [
      "applicationVersion" => "1060100"
      "connectDate" => "2019-07-21"
      "attestStatus" => "UNKNOWN"
      "application" => "com.vendor.application"
      "scope" => "*"
      "authorizedEntity" => "..."
      "rel" => array:1 [
        "topics" => array:3 [
          "test-topic" => array:1 [
            "addDate" => "2019-07-21"
          ]
          "test-topic-5d35b46a15094" => array:1 [
            "addDate" => "2019-07-22"
          ]
          "test-topic-5d35b46b66c31" => array:1 [
            "addDate" => "2019-07-22"
          ]
        ]
      ]
      "connectionType" => "WIFI"
      "appSigner" => "..."
      "platform" => "ANDROID"
    ]
*/

/* Example output for a web application instance
    [
      "application" => "webpush"
      "scope" => ""
      "authorizedEntity" => "..."
      "rel" => array:1 [
        "topics" => array:2 [
          "test-topic-5d35b445b830a" => array:1 [
            "addDate" => "2019-07-22"
          ]
          "test-topic-5d35b446c0839" => array:1 [
            "addDate" => "2019-07-22"
          ]
        ]
      ]
      "platform" => "BROWSER"
    ]
*/






Note

As the data returned by the Google Instance ID API can return differently formed results depending on the
application or platform, it is currently difficult to add reliable convenience methods for specific
fields in the raw data.




Working with topic subscriptions

You can retrieve all topic subscriptions for an app instance with the topicSubscriptions() method:

$appInstance = $messaging->getAppInstance('<registration token>');

/** @var \Kreait\Firebase\Messaging\TopicSubscriptions $subscriptions */
$subscriptions = $appInstance->topicSubscriptions();

foreach ($subscriptions as $subscription) {
    echo "{$subscription->registrationToken()} is subscribed to {$subscription->topic()}\n";
}













          

      

      

    

  

    
      
          
            
  
Cloud Firestore

[image: Available since v4.33]
 [https://github.com/kreait/firebase-php/releases/tag/4.33.0]This SDK provides a bridge to the google/cloud-firestore [https://packagist.org/packages/google/cloud-firestore]
package. You can enable the component in the SDK by adding the package to your project dependencies:

composer require google/cloud-firestore





Alternatively, you can specify the package as a dependency in your project’s existing composer.json file:

 {
   "require": {
     "google/cloud-firestore": "^1.8",
     "kreait/firebase-php": "^4.33"
   }
}






Note

The google/cloud-firestore package requires the gRPC PHP extension to be installed. You can find installation
instructions for gRPC at github.com/grpc/grpc [https://github.com/grpc/grpc/tree/master/src/php]. The following
projects aim to provide support for Firestore without the need to install the gRPC PHP extension, but have to
be set up separately:


	ahsankhatri/firestore-php [https://github.com/ahsankhatri/firestore-php]


	morrislaptop/firestore-php [https://github.com/morrislaptop/firestore-php]






Before you start, please read about Firestore in the official documentation:


	Official Documentation [https://firebase.google.com/docs/firestore/]


	google/cloud-firestore on GitHub [https://github.com/googleapis/google-cloud-php-firestore]


	PHP API Documentation [https://googleapis.github.io/google-cloud-php/#/docs/cloud-firestore]


	PHP Usage Examples [https://github.com/GoogleCloudPlatform/php-docs-samples/tree/master/firestore]





Initializing the Firestore component

With the SDK

$firestore = $factory->createFirestore();





With Dependency Injection (Symfony Bundle [https://github.com/kreait/firebase-bundle]/Laravel/Lumen Package [https://github.com/kreait/laravel-firebase])

use Kreait\Firebase\Firestore;

class MyService
{
    public function __construct(Firestore $firestore)
    {
        $this->firestore = $firestore;
    }
}





With the Laravel app() helper (Laravel/Lumen Package [https://github.com/kreait/laravel-firebase])

$firestore = app('firebase.firestore');








Getting started

$database = $firestore->database();





$database is an instance of Google\Cloud\Firestore\FirestoreClient. Please refer to the links above for
guidance on how to proceed from here.







          

      

      

    

  

    
      
          
            
  
Cloud Storage

Cloud Storage for Firebase stores your data in Google Cloud Storage [https://cloud.google.com/storage],
an exabyte scale object storage solution with high availability and global redundancy.

This SDK provides a bridge to the google/cloud-storage [https://packagist.org/packages/google/cloud-storage]
package. You can enable the component in the SDK by adding the package to your project dependencies:

Before you start, please read about Firebase Cloud Storage in the official documentation:


	Firebase Cloud Storage [https://firebase.google.com/docs/storage/]


	Introduction to the Admin Cloud Storage API [https://firebase.google.com/docs/storage/admin/start]


	PHP API Documentation [https://googleapis.github.io/google-cloud-php/#/docs/cloud-storage]


	PHP Usage examples [https://github.com/GoogleCloudPlatform/php-docs-samples/blob/master/storage]





Initializing the Storage component

With the SDK

$storage = $factory->createStorage();





With Dependency Injection (Symfony Bundle [https://github.com/kreait/firebase-bundle]/Laravel/Lumen Package [https://github.com/kreait/laravel-firebase])

use Kreait\Firebase\Storage;

class MyService
{
    public function __construct(Storage $storage)
    {
        $this->storage = $storage;
    }
}





With the Laravel app() helper (Laravel/Lumen Package [https://github.com/kreait/laravel-firebase])

$storage = app('firebase.storage');








Getting started

$storageClient = $storage->getStorageClient();
$defaultBucket = $storage->getBucket();
$anotherBucket = $storage->getBucket('another-bucket');








Default Storage bucket


Note

It is not necessary to change the default storage bucket in most cases.



The SDK assumes that your project’s default storage bucket name has the format <project-id>.appspot.com
and will configure the storage instance accordingly.

If you want to change the default bucket your instance works with, you can specify the name when using
the factory:

use Kreait\Firebase\Factory;

$storage = (new Factory())
    ->withDefaultStorageBucket('another-default-bucket')
    ->createStorage();











          

      

      

    

  

    
      
          
            
  
Realtime Database


Note

The Realtime Database API currently does not support realtime event listeners.




Initializing the Realtime Database component

With the SDK

$database = $factory->createDatabase();





With Dependency Injection (Symfony Bundle [https://github.com/kreait/firebase-bundle]/Laravel/Lumen Package [https://github.com/kreait/laravel-firebase])

use Kreait\Firebase\Database;

class MyService
{
    public function __construct(Database $database)
    {
        $this->database = $database;
    }
}





With the Laravel app() helper (Laravel/Lumen Package [https://github.com/kreait/laravel-firebase])

$database = app('firebase.database');








Retrieving data

Every node in your database can be accessed through a Reference:

$reference = $database->getReference('path/to/child/location');






Note

Creating a reference does not result in a request to your Database. Requests to your Firebase
applications are executed with the getSnapshot() and getValue() methods only.



You can then retrieve a Database Snapshot for the Reference or its value directly:

$snapshot = $reference->getSnapshot();

$value = $snapshot->getValue();
// or
$value = $reference->getValue();






Database Snapshots

Database Snapshots are immutable copies of the data at a Firebase Database location at the time of a
query. The can’t be modified and will never change.

$snapshot = $reference->getSnapshot();
$value = $snapshot->getValue();

$value = $reference->getValue(); // Shortcut for $reference->getSnapshot()->getValue();





Snapshots provide additional methods to work with and analyze the contained value:


	exists() returns true if the Snapshot contains any (non-null) data.


	getChild() returns another Snapshot for the location at the specified relative path.


	getKey() returns the key (last part of the path) of the location of the Snapshot.


	getReference() returns the Reference for the location that generated this Snapshot.


	getValue() returns the data contained in this Snapshot.


	hasChild() returns true if the specified child path has (non-null) data.


	hasChildren() returns true if the Snapshot has any child properties, i.e. if the value is an array.


	numChildren() returns the number of child properties of this Snapshot, if there are any.







Queries

You can use Queries to filter and order the results returned from the Realtime Database. Queries behave exactly
like References. That means you can execute any method on a Query that you can execute on a Reference.


Note

You can combine every filter query with every order query, but not multiple queries of each type.
Shallow queries are a special case: they can not be combined with any other query method.






Shallow queries

This is an advanced feature, designed to help you work with large datasets without needing to download
everything. Set this to true to limit the depth of the data returned at a location. If the data at
the location is a JSON primitive (string, number or boolean), its value will simply be returned.

If the data snapshot at the location is a JSON object, the values for each key will be
truncated to true.

Detailed information can be found on
the official Firebase documentation page for shallow queries [https://firebase.google.com/docs/database/rest/retrieve-data#shallow]

$db->getReference('currencies')
    // order the reference's children by their key in ascending order
    ->shallow()
    ->getSnapshot();





A convenience method is available to retrieve the key names of a reference’s children:

$db->getReference('currencies')->getChildKeys(); // returns an array of key names








Ordering data

The official Firebase documentation explains
How data is ordered [https://firebase.google.com/docs/database/rest/retrieve-data#section-rest-ordered-data].

Data is always ordered in ascending order.

You can only order by one property at a time - if you try to order by multiple properties,
e.g. by child and by value, an exception will be thrown.


By key

$db->getReference('currencies')
    // order the reference's children by their key in ascending order
    ->orderByKey()
    ->getSnapshot();








By value


Note

In order to order by value, you must define an index, otherwise the Firebase API will
refuse the query.

{
    "currencies": {
        ".indexOn": ".value"
    }
}







$db->getReference('currencies')
    // order the reference's children by their value in ascending order
    ->orderByValue()
    ->getSnapshot();








By child


Note

In order to order by a child value, you must define an index, otherwise the Firebase API will
refuse the query.

{
    "people": {
        ".indexOn": "height"
    }
}







$db->getReference('people')
    // order the reference's children by the values in the field 'height' in ascending order
    ->orderByChild('height')
    ->getSnapshot();










Filtering data

To be able to filter results, you must also define an order.


limitToFirst

$db->getReference('people')
    // order the reference's children by the values in the field 'height'
    ->orderByChild('height')
    // limits the result to the first 10 children (in this case: the 10 shortest persons)
    // values for 'height')
    ->limitToFirst(10)
    ->getSnapshot();








limitToLast

$db->getReference('people')
    // order the reference's children by the values in the field 'height'
    ->orderByChild('height')
    // limits the result to the last 10 children (in this case: the 10 tallest persons)
    ->limitToLast(10)
    ->getSnapshot();








startAt

$db->getReference('people')
    // order the reference's children by the values in the field 'height'
    ->orderByChild('height')
    // returns all persons taller than or exactly 1.68 (meters)
    ->startAt(1.68)
    ->getSnapshot();








endAt

$db->getReference('people')
    // order the reference's children by the values in the field 'height'
    ->orderByChild('height')
    // returns all persons shorter than or exactly 1.98 (meters)
    ->endAt(1.98)
    ->getSnapshot();








equalTo

$db->getReference('people')
    // order the reference's children by the values in the field 'height'
    ->orderByChild('height')
    // returns all persons being exactly 1.98 (meters) tall
    ->equalTo(1.98)
    ->getSnapshot();












Saving data


Set/replace values

For basic write operations, you can use set() to save data to a specified reference,
replacing any existing data at that path. For example a configuration array for
a website might be set as follows:

$db->getReference('config/website')
   ->set([
       'name' => 'My Application',
       'emails' => [
           'support' => 'support@domain.tld',
           'sales' => 'sales@domain.tld',
       ],
       'website' => 'https://app.domain.tld',
      ]);

$db->getReference('config/website/name')->set('New name');






Note

Using set() overwrites data at the specified location, including any child nodes.






Update specific fields

To simultaneously write to specific children of a node without overwriting other child nodes,
use the update() method.

When calling update(), you can update lower-level child values by specifying a path for
the key. If data is stored in multiple locations to scale better, you can update all
instances of that data using data fan-out.

For example, in a blogging app you might want to add a post and simultaneously update it
to the recent activity feed and the posting user’s activity feed using code like this:

$uid = 'some-user-id';
$postData = [
    'title' => 'My awesome post title',
    'body' => 'This text should be longer',
];

// Create a key for a new post
$newPostKey = $db->getReference('posts')->push()->getKey();

$updates = [
    'posts/'.$newPostKey => $postData,
    'user-posts/'.$uid.'/'.$newPostKey => $postData,
];

$db->getReference() // this is the root reference
   ->update($updates);








Writing lists

Use the push() method to append data to a list in multiuser applications. The push() method
generates a unique key every time a new child is added to the specified Firebase reference.
By using these auto-generated keys for each new element in the list, several clients can
add children to the same location at the same time without write conflicts.
The unique key generated by push() is based on a timestamp, so list
items are automatically ordered chronologically.

You can use the reference to the new data returned by the push() method to get the value of the
child’s auto-generated key or set data for the child. The getKey() method of a
push() reference contains the auto-generated key.

$postData = [...];
$postRef = $db->getReference('posts')->push($postData);

$postKey = $postRef->getKey(); // The key looks like this: -KVquJHezVLf-lSye6Qg








Server values

Server values can be written at a location using a placeholder value which is an object with a single
.sv key. The value for that key is the type of server value you wish to set.

Firebase currently supports only one server value: timestamp. You can either set it
manually in your write operation, or use a constant from the Firebase\Database class.

The following to usages are equivalent:

$ref = $db->getReference('posts/my-post')
          ->set('created_at', ['.sv' => 'timestamp']);

$ref = $db->getReference('posts/my-post')
          ->set('created_at', Database::SERVER_TIMESTAMP);








Delete data

You can delete a reference, including all data it contains, with the remove() method:

$db->getReference('posts')->remove();





You can also delete by specifying null as the value for another write operation such as
set() or update().

$db->getReference('posts')->set(null);





You can use this technique with update() to delete multiple children in a single API call.






Database transactions


Note

Support for database transactions has been added in release 4.21.0



You can use transaction to update data according to its existing state. For example, if you want to increase
an upvote counter, and want to make sure the count accurately reflects multiple, simultaneous upvotes,
use a transaction to write the new value to the counter. Instead of two writes that change the
counter to the same number, one of the write requests fails and you can then retry the
request with the new value.


Replace data inside a transaction

use Kreait\Firebase\Database\Transaction;

$counterRef = $db->getReference('counter');

$db->runTransaction(function (Transaction $transaction) use ($counterRef) {

    // You have to snapshot the reference in order to change its value
    $counterSnapshot = $transaction->snapshot($counterRef);

    // Get the existing value from the snapshot
    $counter = $counterSnapshot->getValue() ?: 0;
    $newCounter = ++$counter;

    // If the value hasn't changed in the Realtime Database while we are
    // incrementing it, the transaction will be a success.
    $transaction->set($counterRef, $newCounter);
});








Delete data inside a transaction

Likewise, you can wrap the removal of a reference in a transaction as well: you can remove the reference
only if it hasn’t changed in the meantime.

use Kreait\Firebase\Database\Transaction;

$toBeDeleted = $db->getReference('to-be-deleted');

$db->runTransaction(function (Transaction $transaction) use ($toBeDeleted) {

    $transaction->snapshot($toBeDeleted);

    $transaction->remove($toBeDeleted);
});








Handling transaction failures

If you haven’t snapshotted a reference before trying to change it, the operation will fail
with a \Kreait\Firebase\Exception\Database\ReferenceHasNotBeenSnapshotted error.

If the reference has changed in the Realtime Database after you started the transaction,
the transaction will fail with a \Kreait\Firebase\Exception\Database\TransactionFailed
error.

use Kreait\Firebase\Database\Transaction;
use Kreait\Firebase\Exception\Database\ReferenceHasNotBeenSnapshotted;
use Kreait\Firebase\Exception\Database\TransactionFailed;

$ref = $db->getReference('my-ref');

try {
    $db->runTransaction(function (Transaction $transaction) use ($ref) {

        // $transaction->snapshot($ref);

        $ref->set('value change without a transaction');

        $transaction->set($ref, 'this will fail');
    });

} catch (ReferenceHasNotBeenSnapshotted $e) {

    $referenceInQuestion = $e->getReference();

    echo $e->getReference()->getUri().': '.$e->getMessage();

} catch (TransactionFailed $e) {

    $referenceInQuestion = $e->getReference();
    $failedRequest = $e->getRequest();
    $failureResponse = $e->getResponse();

    echo $e->getReference()->getUri().': '.$e->getMessage();

}










Debugging API exceptions

When a request to Firebase fails, the SDK will throw a \Kreait\Firebase\Exception\ApiException that
includes the sent request and the received response object:

try {
    $db->getReference('forbidden')->getValue();
} catch (ApiException $e) {
    /** @var \Psr\Http\Message\RequestInterface $request */
    $request = $e->getRequest();
    /** @var \Psr\Http\Message\ResponseInterface|null $response */
    $response = $e->getResponse();

    echo $request->getUri().PHP_EOL;
    echo $request->getBody().PHP_EOL;

    if ($response) {
        echo $response->getBody();
    }
}








Database rules

Learn more about the usage of Firebase Realtime Database Rules in the
official documentation [https://firebase.google.com/docs/database/security/].

use Kreait\Firebase\Database\RuleSet;

// The default rules allow full read and write access to authenticated users of your app
$ruleSet = RuleSet::default();

// This level of access means anyone can read or write to your database. You should
// configure more secure rules before launching your app.
$ruleSet = RuleSet::public();

// Private rules disable read and write access to your database by users.
// With these rules, you can only access the database through the
// Firebase console and the Admin SDKs.
$ruleSet = RuleSet::private();

// You can define custom rules
$ruleSet = RuleSet::fromArray(['rules' => [
    '.read' => true,
    '.write' => false,
    'users' => [
        '$uid' => [
            '.read' => '$uid === auth.uid',
            '.write' => '$uid === auth.uid',
        ]
    ]
]]);

$db->updateRules($ruleSet);

$freshRuleSet = $db->getRuleSet(); // Returns a new RuleSet instance
$actualRules = $ruleSet->getRules(); // returns an array











          

      

      

    

  

    
      
          
            
  
Authentication

Before you start, please read about Firebase Authentication in the official documentation:


	Introduction to the Admin Database API [https://firebase.google.com/docs/database/admin/start]


	Create custom tokens [https://firebase.google.com/docs/auth/admin/create-custom-tokens]


	Verify ID Tokens [https://firebase.google.com/docs/auth/admin/verify-id-tokens]


	Revoke refresh tokens [https://firebase.google.com/docs/reference/admin/node/admin.auth.Auth#revokeRefreshTokens]




Before you can access the Firebase Realtime Database from a server using the Firebase Admin SDK,
you must authenticate your server with Firebase. When you authenticate a server, rather than
sign in with a user account’s credentials as you would in a client app, you authenticate
with a service account [https://developers.google.com/identity/protocols/OAuth2ServiceAccount]
which identifies your server to Firebase.

You can get two different levels of access when you authenticate using the Firebase Admin SDK:

Administrative privileges: Complete read and write access to a project’s Realtime Database.
Use with caution to complete administrative tasks such as data migration or restructuring
that require unrestricted access to your project’s resources.

Limited privileges: Access to a project’s Realtime Database, limited to only the resources
your server needs. Use this level to complete administrative tasks that have well-defined
access requirements. For example, when running a summarization job that reads data
across the entire database, you can protect against accidental writes by setting
a read-only security rule and then initializing the Admin SDK with privileges
limited by that rule.


Initializing the Auth component

With the SDK

$auth = $factory->createAuth();





With Dependency Injection (Symfony Bundle [https://github.com/kreait/firebase-bundle]/Laravel/Lumen Package [https://github.com/kreait/laravel-firebase])

use Kreait\Firebase\Auth;

class MyService
{
    public function __construct(Auth $auth)
    {
        $this->auth = $auth;
    }
}





With the Laravel app() helper (Laravel/Lumen Package [https://github.com/kreait/laravel-firebase])

$auth = app('firebase.auth');








Create custom tokens

The Firebase Admin SDK has a built-in method for creating custom tokens. At a minimum, you need to provide a uid,
which can be any string but should uniquely identify the user or device you are authenticating.
These tokens expire after one hour.

$uid = 'some-uid';

$customToken = $auth->createCustomToken($uid);





You can also optionally specify additional claims to be included in the custom token. For example,
below, a premiumAccount field has been added to the custom token, which will be available in
the auth / request.auth objects in your Security Rules:

$uid = 'some-uid';
$additionalClaims = [
    'premiumAccount' => true
];

$customToken = $auth->createCustomToken($uid, $additionalClaims);

$customTokenString = (string) $customToken;






Note

This library uses lcobucci/jwt [https://github.com/lcobucci/jwt] to work with JSON Web Tokens (JWT).
You can find the usage instructions at
https://github.com/lcobucci/jwt/blob/3.2/README.md.






Verify a Firebase ID Token

If a Firebase client app communicates with your server, you might need to identify the currently signed-in user.
To do so, verify the integrity and authenticity of the ID token and retrieve the uid from it.
You can use the uid transmitted in this way to securely identify the currently signed-in user on your server.


Note

Many use cases for verifying ID tokens on the server can be accomplished by using Security Rules for the
Firebase Realtime Database [https://firebase.google.com/docs/database/security/] and
Cloud Storage [https://firebase.google.com/docs/storage/security/].
See if those solve your problem before verifying ID tokens yourself.




Warning

The ID token verification methods included in the Firebase Admin SDKs are meant to verify ID tokens that come
from the client SDKs, not the custom tokens that you create with the Admin SDKs.
See Auth tokens [https://firebase.google.com/docs/auth/users/#auth_tokens]
for more information.



Use Auth::verifyIdToken() to verify an ID token:

use Firebase\Auth\Token\Exception\InvalidToken;

$idTokenString = '...';

try {
    $verifiedIdToken = $auth->verifyIdToken($idTokenString);
} catch (\InvalidArgumentException $e) {
    echo 'The token could not be parsed: '.$e->getMessage();
} catch (InvalidToken $e) {
    echo 'The token is invalid: '.$e->getMessage();
}

$uid = $verifiedIdToken->getClaim('sub');
$user = $auth->getUser($uid);





Auth::verifyIdToken() accepts the following parameters:








	Parameter

	Type

	Description





	idToken

	string|Token

	(required) The ID token to verify



	checkIfRevoked

	boolean

	(optional, default: false ) check if the ID token is revoked







Note

A leeway of 5 minutes is applied when verifying time based claims starting with release 4.25.0




Note

This library uses lcobucci/jwt [https://github.com/lcobucci/jwt] to work with JSON Web Tokens (JWT).
You can find the usage instructions at
https://github.com/lcobucci/jwt/blob/3.2/README.md.






Custom Authentication Flows

[image: Available since v4.41]
 [https://github.com/kreait/firebase-php/releases/tag/4.41.0]
Warning

It is recommended that you use the Firebase Client SDKs to perform user authentication. Once
signed in via a client SDK, you should pass the logged-in user’s current ID token to your
PHP endpoint and verify the ID token with each request
to your backend.



Each of the methods documented below will return an instance of Kreait\Firebase\Auth\SignInResult\SignInResult
with the following accessors:

use Kreait\Firebase\Auth;

// $signInResult = $auth->signIn*()

$signInResult->idToken(); // string|null
$signInResult->accessToken(); // string|null
$signInResult->refreshToken(); // string|null
$signInResult->data(); // array
$signInResult->asTokenResponse(); // array





SignInResult::data() returns the full payload of the response returned by the Firebase API,
SignInResult::asTokenResponse() returns the Sign-In result in a format that can be returned to
clients:

$tokenResponse = [
    'token_type' => 'Bearer',
    'access_token' => '...',
    'id_token' => '...',
    'refresh_token' => '...',
    'expires_in' => 3600,
];






Note

Not all sign-in methods return all types of tokens.




Anonymous Sign In


Note

This method will create a new user in the Firebase Auth User Database each time
it is invoked



$signInResult = $auth->signInAnonymously();








Sign In with Email and Password

$signInResult = $auth->signInWithEmailAndPassword($email, $clearTextPassword);








Sign In with Email and Oob Code

$signInResult = $auth->signInWithEmailAndOobCode($email, $oobCode);








Sign In with a Custom Token

$signInResult = $auth->signInWithCustomToken($customToken);








Sign In with a Refresh Token

$signInResult = $auth->signInWithRefreshToken($refreshToken);








Sign In without a token

$signInResult = $auth->signInAsUser($userOrUid, array $claims = null);










Invalidate user sessions

This will revoke all sessions for a specified user and disable any new ID tokens for existing sessions from getting
minted. Existing ID tokens may remain active until their natural expiration (one hour). To verify that
ID tokens are revoked, use Auth::verifyIdToken() with the second parameter set to true.

If the check fails, a RevokedIdToken exception will be thrown.

use Kreait\Firebase\Exception\Auth\RevokedIdToken;

$auth->revokeRefreshTokens($uid);

try {
    $verifiedIdToken = $auth->verifyIdToken($idTokenString, $checkIfRevoked = true);
} catch (RevokedIdToken $e) {
    echo $e->getMessage();
}






Note

Because Firebase ID tokens are stateless JWTs, you can determine a token has been revoked only by requesting the
token’s status from the Firebase Authentication backend. For this reason, performing this check on your server
is an expensive operation, requiring an extra network round trip. You can avoid making this network request
by setting up Firebase Rules that check for revocation rather than using the Admin SDK to make the check.

For more information, please visit
Google: Detect ID token revocation in Database Rules [https://firebase.google.com/docs/auth/admin/manage-sessions#detect_id_token_revocation_in_database_rules]









          

      

      

    

  

    
      
          
            
  
User management

The Firebase Admin SDK for PHP provides an API for managing your Firebase users with elevated privileges.
The admin user management API gives you the ability to programmatically retrieve, create, update, and
delete users without requiring a user’s existing credentials and without worrying about client-side
rate limiting.


User Records

UserRecord s returned by methods from the Kreait\Firebase\Auth class have the
following signature:

{
    "uid": "jEazVdPDhqec0tnEOG7vM5wbDyU2",
    "email": "user@domain.tld",
    "emailVerified": true,
    "displayName": null,
    "photoUrl": null,
    "phoneNumber": null,
    "disabled": false,
    "metadata": {
        "createdAt": "2018-02-14T15:41:32+00:00",
        "lastLoginAt": "2018-02-14T15:41:32+00:00"
    },
    "providerData": [
        {
            "uid": "user@domain.tld",
            "displayName": null,
            "email": "user@domain.tld",
            "photoUrl": null,
            "providerId": "password",
            "phoneNumber": null
        }
    ],
    "passwordHash": "UkVEQUNURUQ=",
    "customClaims": null,
    "tokensValidAfterTime": "2018-02-14T15:41:32+00:00"
}








List users

To enhance performance and prevent memory issues when retrieving a huge amount of users,
this methods returns a Generator [http://php.net/manual/en/language.generators.overview.php].

$users = $auth->listUsers($defaultMaxResults = 1000, $defaultBatchSize = 1000);

foreach ($users as $user) {
    /** @var \Kreait\Firebase\Auth\UserRecord $user */
    // ...
}
// or
array_map(function (\Kreait\Firebase\Auth\UserRecord $user) {
    // ...
}, iterator_to_array($users));








Get information about a specific user

$user = $auth->getUser('some-uid');
$user = $auth->getUserByEmail('user@domain.tld');
$user = $auth->getUserByPhoneNumber('+49-123-456789');








Create a user

The Admin SDK provides a method that allows you to create a new Firebase Authentication user.
This method accepts an object containing the profile information to include in the newly created user account:

$userProperties = [
    'email' => 'user@example.com',
    'emailVerified' => false,
    'phoneNumber' => '+15555550100',
    'password' => 'secretPassword',
    'displayName' => 'John Doe',
    'photoUrl' => 'http://www.example.com/12345678/photo.png',
    'disabled' => false,
];

$createdUser = $auth->createUser($userProperties);

// This is equivalent to:

$request = \Kreait\Auth\Request\CreateUser::new()
    ->withUnverifiedEmail('user@example.com')
    ->withPhoneNumber('+15555550100')
    ->withClearTextPassword('secretPassword')
    ->withDisplayName('John Doe')
    ->withPhotoUrl('http://www.example.com/12345678/photo.png');

$createdUser = $auth->createUser($request);





By default, Firebase Authentication will generate a random uid for the new user.
If you instead want to specify your own uid for the new user, you can include
in the properties passed to the user creation method:

$properties = [
    'uid' => 'some-uid',
    // other properties
];

$request = \Kreait\Auth\Request\CreateUser::new()
    ->withUid('some-uid')
    // with other properties
;





Any combination of the following properties can be provided:








	Property

	Type

	Description





	uid

	string

	The uid to assign to the newly created user. Must be a string between 1 and 128 characters long, inclusive. If not provided, a random uid will be automatically generated.



	email

	string

	The user’s primary email. Must be a valid email address.



	emailVerified

	boolean

	Whether or not the user’s primary email is verified. If not provided, the default is false.



	phoneNumber

	string

	The user’s primary phone number. Must be a valid E.164 spec compliant phone number.



	password

	string

	The user’s raw, unhashed password. Must be at least six characters long.



	displayName

	string

	The users’ display name.



	photoURL

	string

	The user’s photo URL.



	disabled

	boolean

	Whether or not the user is disabled. true for disabled; false for enabled. If not provided, the default is false.







Note

All of the above properties are optional. If a certain property is not specified,
the value for that property will be empty unless a default is mentioned
in the above table.




Note

If you provide none of the properties, an anonymous user will be created.






Update a user

Updating a user works exactly as creating a new user, except that the uid property is required:

$uid = 'some-uid';
$properties = [
    'displayName' => 'New display name'
];

$updatedUser = $auth->updateUser($uid, $properties);

$request = \Kreait\Auth\Request\UpdateUser::new()
    ->withDisplayName('New display name');

$updatedUser = $auth->updateUser($uid, $request);





In addition to the properties of a create request, the following properties can be provided:








	Property

	Type

	Description





	deletePhotoUrl

	boolean

	Whether or not to delete the user’s photo.



	deleteDisplayName

	boolean

	Whether or not to delete the user’s display name.



	deletePhoneNumber

	boolean

	Whether or not to delete the user’s phone number.



	deleteProvider

	string|array

	One or more identity providers to delete.



	customAttributes

	array

	A list of custom attributes which will be available in a User’s ID token.









Change a user’s password

$uid = 'some-uid';

$updatedUser = $auth->changeUserPassword($uid, 'new password');








Change a user’s email

$uid = 'some-uid';

$updatedUser = $auth->changeUserEmail($uid, 'user@domain.tld');








Disable a user

$uid = 'some-uid';

$updatedUser = $auth->disableUser($uid);








Enable a user

$uid = 'some-uid';

$updatedUser = $auth->enableUser($uid);








Update custom attributes

$uid = 'some-uid';
$customAttributes = [
    'admin' => true,
    'groupId' => '1234'
];

$updatedUser = $auth->setCustomUserAttributes($uid, $customAttributes);
$userWithDeletedCustomAttributes = $auth->deleteCustomUserAttributes($uid);






Note

Learn more about custom attributes/claims in the official documentation:
Control Access with Custom Claims and Security Rules [https://firebase.google.com/docs/auth/admin/custom-claims]






Delete a user

$uid = 'some-uid';

$auth->deleteUser($uid);








Using Email Action Codes

[image: Available since v4.37]
 [https://github.com/kreait/firebase-php/releases/tag/4.37.0]The Firebase Admin SDK provides the ability to send users emails containing links they can use for password resets,
email address verification, and email-based sign-in. These emails are sent by Google and have limited
customizability.

If you want to instead use your own email templates and your own email delivery service, you can use the
Firebase Admin SDK to programmatically generate the action links for the above flows, which you can
include in emails to your users.


Action Code Settings


Note

Action Code Settings are optional.



Action Code Settings allow you to pass additional state via a continue URL which is accessible after the user clicks
the email link. This also provides the user the ability to go back to the app after the action is completed.
In addition, you can specify whether to handle the email action link directly from a mobile application
when it is installed or from a browser.

For links that are meant to be opened via a mobile app, you’ll need to enable Firebase Dynamic Links and perform some
tasks to detect these links from your mobile app. Refer to the instructions on how to
configure Firebase Dynamic Links [https://firebase.google.com/docs/auth/web/passing-state-in-email-actions#configuring_firebase_dynamic_links]
for email actions.








	Parameter

	Type

	Description





	continueUrl

	string|null

	Sets the continue URL



	url

	string|null

	Alias for continueUrl



	handleCodeInApp

	bool|null

	
Whether the email action link will be opened in a mobile app or a web link first.

The default is false. When set to true, the action code link will be be sent

as a Universal Link or Android App Link and will be opened by the app if

installed. In the false case, the code will be sent to the web widget first

and then on continue will redirect to the app if installed.






	androidPackageName

	string|null

	
Sets the Android package name. This will try to open the link in an android app

if it is installed.






	androidInstallApp

	bool|null

	
Whether to install the Android app if the device supports it and the app is not

already installed. If this field is provided without a androidPackageName,

an error is thrown explaining that the packageName must be provided in

conjunction with this field.






	androidMinimumVersion

	string|null

	
If specified, and an older version of the app is installed,

the user is taken to the Play Store to upgrade the app.

The Android app needs to be registered in the Console.






	iOSBundleId

	string|null

	
Sets the iOS bundle ID. This will try to open the link in an iOS app if it is

installed. The iOS app needs to be registered in the Console.









Example:

$actionCodeSettings = [
    'continueUrl' => 'https://www.example.com/checkout?cartId=1234',
    'handleCodeInApp' => true,
    'dynamicLinkDomain' => 'coolapp.page.link',
    'androidPackageName' => 'com.example.android',
    'androidMinimumVersion' => '12',
    'androidInstallApp' => true,
    'iOSBundleId' => 'com.example.ios',
];








Email verification

To generate an email verification link, provide the existing user’s unverified email and optional Action Code Settings.
The email used must belong to an existing user. Depending on the method you use, an email will be sent to the user,
or you will get an email action link that you can use in a custom email.

$link = $auth->getEmailVerificationLink($email);
$link = $auth->getEmailVerificationLink($email, $actionCodeSettings);

$auth->sendEmailVerificationLink($email);
$auth->sendEmailVerificationLink($email, $actionCodeSettings);
$auth->sendEmailVerificationLink($email, null, $locale);
$auth->sendEmailVerificationLink($email, $actionCodeSettings, $locale);








Password reset

To generate a password reset link, provide the existing user’s email and optional Action Code Settings.
The email used must belong to an existing user. Depending on the method you use, an email will be sent to the user,
or you will get an email action link that you can use in a custom email.

$link = $auth->getPasswordResetLink($email);
$link = $auth->getPasswordResetLink($email, $actionCodeSettings);

$auth->sendPasswordResetLink($email);
$auth->sendPasswordResetLink($email, $actionCodeSettings);
$auth->sendPasswordResetLink($email, null, $locale);
$auth->sendPasswordResetLink($email, $actionCodeSettings, $locale);








Email link for sign-in


Note

Before you can authenticate users with email link sign-in, you will need to enable
email link sign-in [https://firebase.google.com/docs/auth/web/email-link-auth#enable_email_link_sign-in_for_your_firebase_project]
for your Firebase project.




Note

Unlike password reset and email verification, the email used does not necessarily need to belong to an existing user,
as this operation can be used to sign up new users into your app via email link.




Note

The ActionCodeSettings object is required in this case to provide information on where to return the user after the
link is clicked for sign-in completion.



To generate a sign-in link, provide the user’s email and Action Code Settings. Depending on the method you use,
an email will be sent to the user, or you will get an email action link that you can use in a custom email.

$link = $auth->getSignInWithEmailLink($email, $actionCodeSettings);

$auth->sendSignInWithEmailLink($email, $actionCodeSettings);
$auth->sendSignInWithEmailLink($email, $actionCodeSettings, $locale);








Confirm a password reset


Note

Out of the box, Firebase handles the confirmation of password reset requests. You can use your own
server to handle account management emails by following the instructions on
Customize account management emails and SMS messages [https://support.google.com/firebase/answer/7000714]



$oobCode = '...'; // Extract the OOB code from the request url (not scope of the SDK (yet :)))
$newPassword = '...';
$invalidatePreviousSessions = true; // default, will revoke current user refresh tokens

try {
    $auth->confirmPasswordReset($oobCode, $newPassword, $invalidatePreviousSessions);
} catch (\Kreait\Firebase\Exception\Auth\ExpiredOobCode $e) {
    // Handle the case of an expired reset code
} catch (\Kreait\Firebase\Exception\Auth\InvalidOobCode $e) {
    // Handle the case of an invalid reset code
} catch (\Kreait\Firebase\Exception\AuthException $e) {
    // Another error has occurred
}













          

      

      

    

  

    
      
          
            
  
Dynamic Links

[image: Available since v4.32]
 [https://github.com/kreait/firebase-php/releases/tag/4.32.0]You can create short Dynamic Links with the Firebase Admin SDK for PHP. Dynamic Links can be


	a long Dynamic Link


	an array containing Dynamic Link parameters


	an action created with builder methods




and will return a URL like https://example.page.link/wXYZ.


Note

Short Dynamic Links created via the REST API or this SDK do not show up in the Firebase console. Such Dynamic Links
are intended for user-to-user sharing. For marketing use cases, continue to create your links directly through the
Dynamic Links page [https://console.firebase.google.com/project/_/durablelinks/] of the Firebase console.



Before you start, please read about Dynamic Links in the official documentation:


	Dynamic Links Product Page [https://firebase.google.com/products/dynamic-links/]


	Create Dynamic Links with the REST API [https://firebase.google.com/docs/dynamic-links/rest]


	Long Dynamic Links [https://firebase.google.com/docs/dynamic-links/create-manually]


	Dynamic Link API Reference [https://firebase.google.com/docs/reference/dynamic-links/link-shortener]





Getting started


	In the Firebase console, open the
Dynamic Links [https://console.firebase.google.com/u/1/project/_/durablelinks/links/] section.


	If you have not already accepted the terms of service and set a domain for your Dynamic Links, do so when prompted.


	If you already have a Dynamic Links domain, take note of it. You need to provide a Dynamic Links Domain when you
programmatically create Dynamic Links.







Initializing the Dynamic Links component

With the SDK

$dynamicLinksDomain = 'https://example.page.link';
$dynamicLinks = $factory->createDynamicLinksService($dynamicLinksDomain);





With Dependency Injection (Symfony Bundle [https://github.com/kreait/firebase-bundle]/Laravel/Lumen Package [https://github.com/kreait/laravel-firebase])

To define the default Dynamic Links Domain for Laravel, configure the FIREBASE_DYNAMIC_LINKS_DEFAULT_DOMAIN environment variable.

use Kreait\Firebase\DynamicLinks;

class MyService
{
    public function __construct(DynamicLinks $dynamicLinks)
    {
        $this->dynamicLinks = $dynamicLinks;
    }
}





With the Laravel app() helper (Laravel/Lumen Package [https://github.com/kreait/laravel-firebase])

To define the default Dynamic Links Domain, configure the FIREBASE_DYNAMIC_LINKS_DEFAULT_DOMAIN environment variable.

$dynamicLinks = app('firebase.dynamic_links');








Create a Dynamic Link

You can create a Dynamic Link by using one of the methods below. Each method will return an instance of
Kreait\Firebase\DynamicLink.

use use Kreait\Firebase\DynamicLink\CreateDynamicLink\FailedToCreateDynamicLink;

$url = 'https://www.example.com/some/path';

try {
    $link = $dynamicLinks->createUnguessableLink($url);
    $link = $dynamicLinks->createDynamicLink($url, CreateDynamicLink::WITH_UNGUESSABLE_SUFFIX);

    $link = $dynamicLinks->createShortLink($url);
    $link = $dynamicLinks->createDynamicLink($url, CreateDynamicLink::WITH_SHORT_SUFFIX);
} catch (FailedToCreateDynamicLink $e) {
    echo $e->getMessage(); exit;
}





If createDynamicLink() is called without a second parameter, the Dynamic Link is created with an unguessable suffix.

Unguessable suffixes have a length of 17 characters, short suffixes a length of 4 characters. You can learn more about
the length of Dynamic Links in the
official documentation [https://firebase.google.com/docs/dynamic-links/rest#set_the_length_of_a_short].

The returned object will be an instance of Kreait\Firebase\DynamicLink with the following accessors:

$link->uri();         // Psr\Http\Message\UriInterface
$link->previewUri();  // Psr\Http\Message\UriInterface
$link->domain();      // string
$link->suffix();      // string
$link->hasWarnings(); // bool
$link->warnings();    // array

$uriString = (string) $link;








Create a short link from a long link

If you have a manually constructed link [https://firebase.google.com/docs/dynamic-links/create-manually],
you can convert it to a short link:

use Kreait\Firebase\DynamicLink\ShortenLongDynamicLink\FailedToShortenLongDynamicLink;

$longLink = 'https://example.page.link?link=https://domain.tld/some/path';

try {
    $link = $dynamicLinks->shortenLongDynamicLink($longLink);
    $link = $dynamicLinks->shortenLongDynamicLink($longLink, ShortenLongDynamicLink::WITH_UNGUESSABLE_SUFFIX);
    $link = $dynamicLinks->shortenLongDynamicLink($longLink, ShortenLongDynamicLink::WITH_SHORT_SUFFIX);
} catch (FailedToShortenLongDynamicLink $e) {
    echo $e->getMessage(); exit;
}





If shortenLongDynamicLink() is called without a second parameter, the Dynamic Link is created with an unguessable suffix.




Get link statistics

You can use this REST API to get analytics data for each of your short Dynamic Links, whether created in the console
or programmatically.


Note

These statistics might not include events that have been logged within the last 36 hours.



use Kreait\Firebase\DynamicLink\GetStatisticsForDynamicLink\FailedToGetStatisticsForDynamicLink;

try {
    $stats = $dynamicLinks->getStatistics('https://example.page.link/wXYZ');
    $stats = $dynamicLinks->getStatistics('https://example.page.link/wXYZ', 14); // duration in days
} catch (FailedToGetStatisticsForDynamicLink $e) {
    echo $e->getMessage(); exit;
}





If getStatistics() is called without a second parameter, stats will include the statistics of the past 7 days.

The returned object will be an instance of Kreait\Firebase\DynamicLink\DynamicLinkStatistics, which currently
only includes event statistics. You can access the raw returned data with $stats->rawData().


Event Statistics

Firebase Dynamic Links tracks the number of times each of your short Dynamic Links have been clicked, as well as the
number of times a click resulted in a redirect, app install, app first-open, or app re-open, including the platform
on which that event occurred.

Each of the following methods returns a (filtered) instance of Kreait\Firebase\DynamicLink\EventStatistics which
supports any combination of filters and is countable with count() or ->count() as shown below:

$eventStats = $stats->eventStatistics();

$allClicks = $eventStats->clicks();
$allRedirects = $eventStats->redirects();
$allAppInstalls = $eventStats->appInstalls();
$allAppFirstOpens = $eventStats->appFirstOpens();
$allAppReOpens = $eventStats->appReOpens();

$allAndroidEvents = $eventStats->onAndroid();
$allDesktopEvents = $eventStats->onDesktop();
$allIOSEvents = $eventStats->onIOS();

$clicksOnDesktop = $eventStats->clicks()->onDesktop();
$appInstallsOnAndroid = $eventStats->onAndroid()->appInstalls();
$appReOpensOnIOS = $eventStats->appReOpens()->onIOS();

$totalAmountOfClicks = count($eventStats->clicks());
$totalAmountOfAppFirstOpensOnAndroid = $eventStats->appFirstOpens()->onAndroid()->count();

$custom = $eventStats->filter(function (array $eventGroup) {
    return $eventGroup['platform'] === 'CUSTOM_PLATFORM_THAT_THE_SDK_DOES_NOT_KNOW_YET';
});










Advanced usage


Using actions

You can fully customize the creation of Dynamic Links by building up a Kreait\Firebase\DynamicLink\CreateDynamicLink
action. The following code shows all available building components:

use Kreait\Firebase\DynamicLink\CreateDynamicLink;

$action = CreateDynamicLink::forUrl($url)
    ->withDynamicLinkDomain('https://example.page.link')
    ->withUnguessableSuffix() // default
    // or
    ->withShortSuffix()
    ->withAnalyticsInfo(
        AnalyticsInfo::new()
            ->withGooglePlayAnalyticsInfo(
                GooglePlayAnalytics::new()
                    ->withGclid('gclid')
                    ->withUtmCampaign('utmCampaign')
                    ->withUtmContent('utmContent')
                    ->withUtmMedium('utmMedium')
                    ->withUtmSource('utmSource')
                    ->withUtmTerm('utmTerm')
            )
            ->withItunesConnectAnalytics(
                ITunesConnectAnalytics::new()
                    ->withAffiliateToken('affiliateToken')
                    ->withCampaignToken('campaignToken')
                    ->withMediaType('8')
                    ->withProviderToken('providerToken')
            )
    )
    ->withNavigationInfo(
        NavigationInfo::new()
            ->withoutForcedRedirect() // default
            // or
            ->withForcedRedirect()
    )
    ->withIOSInfo(
        IOSInfo::new()
            ->withAppStoreId('appStoreId')
            ->withBundleId('bundleId')
            ->withCustomScheme('customScheme')
            ->withFallbackLink('https://fallback.domain.tld')
            ->withIPadBundleId('iPadBundleId')
            ->withIPadFallbackLink('https://ipad-fallback.domain.tld')
    )
    ->withAndroidInfo(
        AndroidInfo::new()
            ->withFallbackLink('https://fallback.domain.tld')
            ->withPackageName('packageName')
            ->withMinPackageVersionCode('minPackageVersionCode')
    )
    ->withSocialMetaTagInfo(
        SocialMetaTagInfo::new()
            ->withDescription('Social Meta Tag description')
            ->withTitle('Social Meta Tag title')
            ->withImageLink('https://domain.tld/image.jpg')
    );

$link = $dynamicLinks->createDynamicLink($action);








Using parameter arrays

If you prefer using a parameter array to configure a Dynamic Link, or if this SDK doesn’t yet have support for a
given new option, you can pass an array to the createDynamicLink() method. As the parameters will not be processed
or validated by the SDK, you have to make sure that the parameter structure matches the one described in the
API Reference Documentation [https://firebase.google.com/docs/reference/dynamic-links/link-shortener]

use use Kreait\Firebase\DynamicLink\CreateDynamicLink\FailedToCreateDynamicLink;

$parameters = [
    'dynamicLinkInfo' => [
        'domainUriPrefix' => 'https://example.page.link',
        'link' => 'https://domain.tld/some/path',
    ],
    'suffix' => ['option' => 'SHORT'],
];

try {
    $link = $dynamicLinks->createDynamicLink($parameters);
} catch (FailedToCreateDynamicLink $e) {
    echo $e->getMessage(); exit;
}













          

      

      

    

  

    
      
          
            
  
Remote Config

[image: Available since v4.3]
 [https://github.com/kreait/firebase-php/releases/tag/4.3.0]Change the behavior and appearance of your app without publishing an app update.

Firebase Remote Config is a cloud service that lets you change the behavior and appearance of your app without
requiring users to download an app update. When using Remote Config, you create in-app default values that
control the behavior and appearance of your app.

Before you start, please read about Firebase Remote Config in the official documentation:


	Firebase Remote Config [https://firebase.google.com/docs/remote-config/]





Before you begin

For Firebase projects created before the March 7, 2018 release of the Remote Config REST API, you must enable the API in the Google APIs console.


	Open the Firebase Remote Config API page [https://console.developers.google.com/apis/api/firebaseremoteconfig.googleapis.com/overview?project=_] in the Google APIs console.


	When prompted, select your Firebase project. (Every Firebase project has a corresponding project in the Google APIs console.)


	Click Enable on the Firebase Remote Config API page.







Initializing the Realtime Database component

With the SDK

$remoteConfig = $factory->createRemoteConfig();





With Dependency Injection (Symfony Bundle [https://github.com/kreait/firebase-bundle]/Laravel/Lumen Package [https://github.com/kreait/laravel-firebase])

use Kreait\Firebase\RemoteConfig;

class MyService
{
    public function __construct(Database $remoteConfig)
    {
        $this->remoteConfig = $remoteConfig;
    }
}





With the Laravel app() helper (Laravel/Lumen Package [https://github.com/kreait/laravel-firebase])

$remoteConfig = app('firebase.remote_config');








Get the Remote Config

$template = $remoteConfig->get(); // Returns a Kreait\Firebase\RemoteConfig\Template

// Added in 4.29.0
$version = $template->version(); // Returns a Kreait\Firebase\RemoteConfig\Version








Create a new Remote Config

use Kreait\Firebase\RemoteConfig;

$template = RemoteConfig\Template::new();








Add a condition

use Kreait\Firebase\RemoteConfig;

$germanLanguageCondition = RemoteConfig\Condition::named('lang_german')
    ->withExpression("device.language in ['de', 'de_AT', 'de_CH']")
    ->withTagColor(TagColor::ORANGE); // The TagColor is optional

$template = $template->withCondition($germanLanguageCondition);








Add a parameter

use Kreait\Firebase\RemoteConfig;

$welcomeMessageParameter = Parameter::named('welcome_message')
        ->withDefaultValue('Welcome!')
        ->withDescription('This is a welcome message') // optional
;








Conditional values

use Kreait\Firebase\RemoteConfig;

$germanLanguageCondition = RemoteConfig\Condition::named('lang_german')
    ->withExpression("device.language in ['de', 'de_AT', 'de_CH']");

$germanWelcomeMessage = RemoteConfig\ConditionalValue::basedOn($germanLanguageCondition, 'Willkommen!');

$welcomeMessageParameter = Parameter::named('welcome_message')
        ->withDefaultValue('Welcome!')
        ->withConditionalValue($germanWelcomeMessage);

$template = $template
    ->withCondition($germanLanguageCondition)
    ->withParameter($welcomeMessageParameter);






Note

When you use a conditional value, make sure to add the corresponding condition to the template first.






Validation

[image: Available since v4.16]
 [https://github.com/kreait/firebase-php/releases/tag/4.16.0]Usually, the SDK will protect you from creating an invalid Remote Config template in the first
place. If you want to be sure, you can validate the template with a call to the Firebase API:

use Kreait\Firebase\Exception\RemoteConfig\ValidationFailed;

try {
    $remoteConfig->validate($template);
} catch (ValidationFailed $e) {
    echo $e->getMessage();
}






Note

The ValidationFailed exception extends Kreait\Firebase\Exception\RemoteConfigException,
so you can safely use the more generic exception type as well.






Publish the Remote Config

use Kreait\Firebase\Exception\RemoteConfigException

try {
    $remoteConfig->publish($template);
} catch (RemoteConfigException $e) {
    echo $e->getMessage();
}








Remote Config history

[image: Available since v4.16]
 [https://github.com/kreait/firebase-php/releases/tag/4.16.0]Since August 23, 2018, Firebase provides a change history for your published Remote configs.

The following properties are available from a Kreait\Firebase\RemoteConfig\Version object:

$version->versionNumber();
$version->user(); // The user/service account the performed the change
$version->description();
$version->updatedAt();
$version->updateOrigin();
$version->updateType();
$version->rollBackSource();






List versions

To enhance performance and prevent memory issues when retrieving a huge amount of versions,
this methods returns a Generator [http://php.net/manual/en/language.generators.overview.php].

foreach ($auth->listVersions() as $version) {
    /** @var \Kreait\Firebase\RemoteConfig\Version $version */
    // ...
}

// or

array_map(function (\Kreait\Firebase\RemoteConfig\Version $version) {
    // ...
}, iterator_to_array($auth->listVersions()));








Filtering

[image: Available since v4.29]
 [https://github.com/kreait/firebase-php/releases/tag/4.29.0]You can filter the results of RemoteConfig::listVersions():

use Kreait\Firebase\RemoteConfig\FindVersions;

$query = FindVersions::all()
    // Versions created/updated after August 1st, 2019 at midnight
    ->startingAt(new DateTime('2019-08-01 00:00:00'))
    // Versions created/updated before August 7th, 2019 at the end of the day
    ->endingAt(new DateTime('2019-08-06 23:59:59'))
    // Versions with version numbers smaller than 3464
    ->upToVersion(VersionNumber::fromValue(3463))
    // Setting a page size can results in faster first results,
    // but results in more request
    ->withPageSize(5)
    // Stop querying after the first 10 results
    ->withLimit(10)
;

// Alternative array notation

$query = [
    'startingAt' => '2019-08-01',
    'endingAt' => '2019-08-07',
    'upToVersion' => 9999,
    'pageSize' => 5,
    'limit' => 10,
];

foreach ($remoteConfig->listVersions($query) as $version) {
    echo "Version number: {$version->versionNumber()}\n";
    echo "Last updated at {$version->updatedAt()->format('Y-m-d H:i:s')}\n";
    // ...
    echo "\n---\n";
}








Get a specific version

$version = $remoteConfig->getVersion($versionNumber);








Rollback to a version

$template = $remoteConfig->rollbackToVersion($versionNumber);













          

      

      

    

  

    
      
          
            
  
Framework Integrations

kreait provides and maintains the following framework integrations for the Firebase Admin SDK for PHP:


Laravel

kreait/laravel-firebase [https://github.com/kreait/laravel-firebase]




Symfony

kreait/firebase-bundle [https://github.com/kreait/firebase-bundle]




CodeIgniter

tatter/firebase [https://github.com/tattersoftware/codeigniter4-firebase]







          

      

      

    

  

    
      
          
            
  
Tutorials

You can find an example project implementing the Firebase Admin SDK for PHP at
https://github.com/jeromegamez/firebase-php-examples .

In addition, the SDK has been featured in the following tutorials:


Articles


	How to integrate Laravel with Google Firebase [https://medium.com/@javinunez/how-to-integrate-laravel-with-google-firebase-512188adae13]
by Javier Núñez [https://twitter.com/javiernunezfdez] (English, April 2019)


	Integrate Firebase With PHP and Optimize Your Real Time Communication [https://www.cloudways.com/blog/php-firebase-integration/]
by Shahroze Nawaz [https://twitter.com/_shahroznawaz] (English, November 2018)


	Connect Laravel with Firebase Real Time Database [https://www.cloudways.com/blog/firebase-realtime-database-laravel/]
by Pardeep Kumar [https://twitter.com/Pardip_Trivedi] (English, March 2018)







Videos


	Firebase for Web | PHP Tutorial [https://youtu.be/jUIDEVzJ4MU] by Umar Hameed [https://twitter.com/umarhameedd] (Hindi/Urdu, January 2019)


	Firebase and PHP [https://youtu.be/3ACxp56r7ag] by Arthur Mann [https://twitter.com/ArthiMann] (English, August 2018)





Note

Do you know another tutorial that is not featured in this list? Then please consider adding it
by creating a Pull Request in the GitHub Repository of this project [https://github.com/kreait/firebase-php].









          

      

      

    

  

    
      
          
            
  
Troubleshooting


PHP Parse Error/PHP Syntax Error

If you’re getting an error in the likes of

PHP Parse error: syntax error, unexpected ':', expecting ';' or '{' in ...





the environment you are running the script in does not use PHP 7.x. You can check this
by adding the line

echo phpversion(); exit;





somewhere in your script.




Class ‘Kreait\Firebase\ …’ not found

You are not using the latest release of the SDK, please update your composer dependencies.




Call to undefined function openssl_sign()

You need to install the OpenSSL PHP Extension: http://php.net/openssl




cURL error XX: …

If you receive a cURL error XX: ..., make sure that you have a current
CA Root Certificates bundle on your system and that PHP uses it.

To see where PHP looks for the CA bundle, check the output of the
following command:

var_dump(openssl_get_cert_locations());





which should lead to an output similar to this:

array(8) {
    'default_cert_file' =>
    string(32) "/usr/local/etc/openssl/cert.pem"
    'default_cert_file_env' =>
    string(13) "SSL_CERT_FILE"
    'default_cert_dir' =>
    string(29) "/usr/local/etc/openssl/certs"
    'default_cert_dir_env' =>
    string(12) "SSL_CERT_DIR"
    'default_private_dir' =>
    string(31) "/usr/local/etc/openssl/private"
    'default_default_cert_area' =>
    string(23) "/usr/local/etc/openssl"
    'ini_cafile' =>
    string(0) ""
    'ini_capath' =>
    string(0) ""
}





Now check if the file given in the default_cert_file field actually exists.
Create a backup of the file, download the current CA bundle from
https://curl.haxx.se/ca/cacert.pem and put it where default_cert_file
points to.

If the problem still occurs, another possible solution is to configure the curl.cainfo
setting in your php.ini:

[curl]
curl.cainfo = /absolute/path/to/cacert.pem








ID Tokens are issued in the future

When ID Token verification fails because of an IssuedInTheFuture exception, this is an
indication that the system time in your environment is not set correctly.

If you chose to ignore the issue, you can catch the exception and return the ID token nonetheless:

use Firebase\Auth\Token\Exception\InvalidToken;
use Firebase\Auth\Token\Exception\IssuedInTheFuture;

$auth = $factory->createAuth();

try {
    return $auth->verifyIdToken($idTokenString);
} catch (IssuedInTheFuture $e) {
    return $e->getToken();
} catch (InvalidIdToken $e) {
    echo $e->getMessage();
    exit;
}








“403 Forbidden” Errors

Under the hood, a Firebase project is actually a Google Cloud project with pre-defined and pre-allocated
permissions and resources.

When Google adds features to its product line, it is possible that you have to manually configure your
Firebase/Google Cloud Project to take advantage of those new features.

When a request to the Firebase APIs fails, please make sure that the according Google Cloud API is
enabled for your project:


	Firebase Services: https://console.cloud.google.com/apis/library/firebase.googleapis.com


	Cloud Messaging (FCM): https://console.cloud.google.com/apis/library/fcm.googleapis.com


	FCM Registration API: https://console.cloud.google.com/apis/library/fcmregistrations.googleapis.com


	Dynamic Links: https://console.cloud.google.com/apis/library/firebasedynamiclinks.googleapis.com


	Firestore: https://console.cloud.google.com/apis/library/firestore.googleapis.com


	Realtime Database Rules: https://console.cloud.google.com/apis/library/firebaserules.googleapis.com


	Remote Config: https://console.cloud.google.com/apis/library/firebaseremoteconfig.googleapis.com


	Storage: https://console.cloud.google.com/apis/library/storage-component.googleapis.com




Please also make sure that the Service Account you are using for your project has all necessary
roles and permissions as described in the official documentation at Manage project access with Firebase IAM [https://firebase.google.com/docs/projects/iam/overview].




Proxy configuration

If you need to access the Firebase/Google APIs through a proxy, you can configure the SDK to use one via
Guzzle’s proxy configuration [http://docs.guzzlephp.org/en/stable/request-options.html#proxy]:

$factory = $factory->withHttpProxy('tcp://<host>:<port>');








Debugging API requests

In order to debug HTTP requests to the Firebase/Google APIs, you can set
Guzzle’s debug option [http://docs.guzzlephp.org/en/stable/request-options.html#debug] to true in the
HTTP client config:

$factory = $factory->withEnabledDebug();











          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/plus.png





_static/up-pressed.png





_static/up.png





_static/ajax-loader.gif





nav.xhtml

    
      Table of Contents


      
        		
          Firebase Admin SDK for PHP
        


        		
          Overview
          
            		
              Requirements
            


            		
              Installation
            


            		
              Usage examples
            


            		
              Issues/Support
            


            		
              License
            


            		
              Contributing
              
                		
                  Guidelines
                


                		
                  Running the tests
                


                		
                  Coding standards
                


              


            


          


        


        		
          Setup
          
            		
              Google Service Account
              
                		
                  With autodiscovery
                


              


            


            		
              Custom Database URI
            


            		
              Caching
            


            		
              End User Credentials
            


          


        


        		
          Cloud Messaging
          
            		
              Initializing the Messaging component
            


            		
              Getting started
            


            		
              Send messages to topics
            


            		
              Send conditional messages
            


            		
              Send messages to specific devices
            


            		
              Send messages to multiple devices (Multicast)
            


            		
              Send multiple messages at once
            


            		
              Adding a notification
            


            		
              Adding data
            


            		
              Changing the message target
            


            		
              Adding target platform specific configuration
              
                		
                  Android
                


                		
                  APNs
                


                		
                  WebPush
                


              


            


            		
              Adding platform independent FCM options
            


            		
              Using Emojis
            


            		
              Sending a fully configured raw message
            


            		
              Validating messages
            


            		
              Topic management
              
                		
                  Subscribe to a topic
                


                		
                  Unsubscribe from a topic
                


              


            


            		
              App instance management
              
                		
                  Working with topic subscriptions
                


              


            


          


        


        		
          Cloud Firestore
          
            		
              Initializing the Firestore component
            


            		
              Getting started
            


          


        


        		
          Cloud Storage
          
            		
              Initializing the Storage component
            


            		
              Getting started
            


            		
              Default Storage bucket
            


          


        


        		
          Realtime Database
          
            		
              Initializing the Realtime Database component
            


            		
              Retrieving data
              
                		
                  Database Snapshots
                


                		
                  Queries
                


                		
                  Shallow queries
                


                		
                  Ordering data
                


                		
                  Filtering data
                


              


            


            		
              Saving data
              
                		
                  Set/replace values
                


                		
                  Update specific fields
                


                		
                  Writing lists
                


                		
                  Server values
                


                		
                  Delete data
                


              


            


            		
              Database transactions
              
                		
                  Replace data inside a transaction
                


                		
                  Delete data inside a transaction
                


                		
                  Handling transaction failures
                


              


            


            		
              Debugging API exceptions
            


            		
              Database rules
            


          


        


        		
          Authentication
          
            		
              Initializing the Auth component
            


            		
              Create custom tokens
            


            		
              Verify a Firebase ID Token
            


            		
              Custom Authentication Flows
              
                		
                  Anonymous Sign In
                


                		
                  Sign In with Email and Password
                


                		
                  Sign In with Email and Oob Code
                


                		
                  Sign In with a Custom Token
                


                		
                  Sign In with a Refresh Token
                


                		
                  Sign In without a token
                


              


            


            		
              Invalidate user sessions
            


          


        


        		
          User management
          
            		
              User Records
            


            		
              List users
            


            		
              Get information about a specific user
            


            		
              Create a user
            


            		
              Update a user
            


            		
              Change a user’s password
            


            		
              Change a user’s email
            


            		
              Disable a user
            


            		
              Enable a user
            


            		
              Update custom attributes
            


            		
              Delete a user
            


            		
              Using Email Action Codes
              
                		
                  Action Code Settings
                


                		
                  Email verification
                


                		
                  Password reset
                


                		
                  Email link for sign-in
                


                		
                  Confirm a password reset
                


              


            


          


        


        		
          Dynamic Links
          
            		
              Getting started
            


            		
              Initializing the Dynamic Links component
            


            		
              Create a Dynamic Link
            


            		
              Create a short link from a long link
            


            		
              Get link statistics
              
                		
                  Event Statistics
                


              


            


            		
              Advanced usage
              
                		
                  Using actions
                


                		
                  Using parameter arrays
                


              


            


          


        


        		
          Remote Config
          
            		
              Before you begin
            


            		
              Initializing the Realtime Database component
            


            		
              Get the Remote Config
            


            		
              Create a new Remote Config
            


            		
              Add a condition
            


            		
              Add a parameter
            


            		
              Conditional values
            


            		
              Validation
            


            		
              Publish the Remote Config
            


            		
              Remote Config history
              
                		
                  List versions
                


                		
                  Filtering
                


                		
                  Get a specific version
                


                		
                  Rollback to a version
                


              


            


          


        


        		
          Framework Integrations
          
            		
              Laravel
            


            		
              Symfony
            


            		
              CodeIgniter
            


          


        


        		
          Tutorials
          
            		
              Articles
            


            		
              Videos
            


          


        


        		
          Troubleshooting
          
            		
              PHP Parse Error/PHP Syntax Error
            


            		
              Class ‘Kreait\Firebase\ …’ not found
            


            		
              Call to undefined function openssl_sign()
            


            		
              cURL error XX: …
            


            		
              ID Tokens are issued in the future
            


            		
              “403 Forbidden” Errors
            


            		
              Proxy configuration
            


            		
              Debugging API requests
            


          


        


      


    
  

_static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/file.png





_static/down-pressed.png





_static/down.png





_static/minus.png





